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The oscillatory instability of convection rolls 
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The instability of convection rolls in a fluid layer heated from below is investi- 
gated for stress-free boundaries in the limit of small Prandtl number. It is shown 
that the two-dimensional rolls become unstable to oscillatory three-dimensional 
disturbances when the amplitude of the convective motion exceeds a finite 
critical value. The instability corresponds to the generation of vertical vorticity, 
a mechanism which is likely to operate in the case of a variety of roll-like motions. 
In  all aspects in which the theory can be related to experiments, reasonable 
agreement with the observations is found. 

1. Introduction 
The onset of convection in a layer heated from below is a particularly simple 

example of hydrodynamic instability. Because the principle of exchange of 
stabilities is valid, i.e. the instability of the static layer occurs in the form of 
non-oscillatory small amplitude motions, a detailed investigation of the non- 
linear post-instability problem has been possible. Owing to the progress in the 
understanding of its finite amplitude properties, convection has become a key 
problem in the theory of the transition from laminar to turbulent flow. In  
contrast to the sudden occurrence of turbulence in the case of plane parallel 
shear flow, the transition in the case of convection is characterized by a series of 
subsequent instabilities as the amplitude is increased. In each of the instabilities 
a more complex form of convection replaces the previous type of convection. 
This process has been studied most extensively in the case of high Prandtl 
number and reasonable agreement between experimental observations and 
theoretical predictions has been found (Busse & Whitehead 1971). In  the present 
paper we shall be concerned with the transition of convection rolls t o  a more 
complex form of flow in the complementary case of small Prandtl numbers. 
Although the analysis is restricted by the assumption of stress-free boundaries, 
it  can be expected that the results found in the two limiting extremes of the 
Prandtl number will yield a qualitatively complete picture of the instabilities of 
convection rolls. 

There also have been other motivations for this paper. One of the most 
puzzling features of convection is the occurrence of oscillatory convection. In  
experiments with a layer of mercury it has been observed by Rossby (1969) and 
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others that the convective motions always exhibit a non-stationary oscillatory 
time dependence in contrast to the steady convection observed in non-metallic 
fluids at  sufficiently small Rayleigh numbers. This difference must be attributed 
t o  the low Prandtl number of mercury. The theoretical analysis, on the other 
hand, has not given any indication hitherto of a qualitative dependence of con- 
vection on the Prandtl number. I n  the non-dimensional description of the 
problem based on the Boussinesq equations the Prandtl number appears as the 
only physical parameter apart from the Rayleigh number. The onset of con- 
vection is independent of the Prandtl number, however, and even for Rayleigh 
numbers beyond the critical value only a quantitative dependence on the 
Prandtl number has been found. It will be shown in this paper that t h e  usual 
analysis based on an expansion in powers of the amplitude has limited relevance 
in the limit of low Prandtl number since it neglects some important nonlinear 
effects. For this reason a different analytical approach will be adopted in the 
following in order to isolate the mechanism of oscillatory instability. 

To illustrate the last remark, it is of interest to consider the peculiar property 
of the convective instability that all unstable modes lack a vertical component 
of vorticity. I n  fact, it has been shown by Schliiter, Lortz & Busse (1965) (whose 
paper we shall refer to as SLB) that the vertical vorticity of all possible solutions 
of thc equations of motion vanishes like A m  with m 2 3, as the amplitude A of 
convection tends to zero. Since it has been proved in SLB that convection in the 
form of two-dimensional rolls represents the only stable form of convection a t  
sufficiently small amplitudes and since the vertical vorticity vanishes for this 
solution for reasons of symmetry, it appeared that the vertical vorticity did 
not play a role in convection processes. It would be surprising, however, if the 
dynamics of convection should lack a t  all amplitudes the additional degree of 
freedom which the vertical component of vorticity provides. The nonlinear terms 
in the equation of motion which are responsible for the generation of vertical 
vorticity increase in importance relative to the nonlinear terms in the heat 
equation as the Prandtl number decreases. Hence we expect that the instability 
of convection rolls is most likely to be associated wibh vertical vorticity in tlie 
case of low Prandtl number. The following analysis confirms this expectation and 
shows that the instability is characterized by the interaction of vertical vorticity 
and oscillatory time dependence. Thus the analysis combines the two elements 
which have been missing so far in the theory of convection. 

The formulation of the stability problem and the method of solution are 
outlined in $2.  For simplicity attention will be restricted to  the case of stress-free 
boundaries with fixed temperatures at top and bottom of the fluid layer. This 
case allows an analytical treatment of the problem with minimal reliance on 
numerical computations. We shall consider disturbances which depend weakly on 
the y co-ordinate in the direction of the axis of the convection rolls. The weak 
dependence permits the expansion of the dependent variables in powers of the 
wavenumber b in the y direction. The hierarchy of linear inhomogeneous 
equations induced by the expansion will be analysed in $ 3 .  The equations of 
order b require the disturbances to have an oscillating time dependence with a 
frequency proportional to the amplitude of the stationary convection roll. To 
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determine 6he real part of the growth rate the equations of order b2 have to be 
considered. The result shows that growing disturbances can exist when the 
amplitude A exceeds a critical value Ai. In  order to extend the stability analysis 
to disturbances with larger wavenumbers we use a different approach in $4, 
based on a Galerkin procedure. The numerical calculations show the anticipated 
result that the amplitude Ai of marginal stability is determined by disturbances 
with nearly vanishing wavenumber b. Disturbances of maximum growth, how- 
ever, correspond to finite values of b as soon as A exceeds the critical value A%. 
A discussion of the results and a comparison with related experimental observa- 
tions follows in 9 5. 

2. Formulation of the problem 
The mathematical description of convection will be based on the Boussinesq 

approximation of the equations of motion and the heat equation. Accordingly, 
all material properties are assumed to be constant with the exception of the 
density in the gravity term. Using the thickness d, d2 /v  and the temperature 
difference between lower and upper boundary divided by RP-I as units for 
length, time and temperature, respectively, we obtain the following dimensionless 
equations for the velocity vector v and the deviation 8 of the temperature from 
the distribution in the static state : 

v2v + A e  - vp = v . vv + avlat, 

v .v  = 0, 

v v + R A . V  = P ( v . v e + a e / a t ) .  (2.3) 

R is the Rayleigh number and P = V / K  is the Prandtl number. Since the time 
scale is based on the viscous diffusion time d2/v rather than on the thermal 
diffusion time d 2 / K ,  as in the usual formulation of the problem (e.g. Busse 1967), 
the Prandtl number appears in the heat equation and not in the equation of 
motion. A denotes the unit vector opposite to the direction of gravity. 

In  order to eliminate the equation of continuity we introduce the following 
general representation of the divergence-free velocity field : 

v = s v  + EW, (2.4) 

where the operators S and E are defined by 

s v  = v x (V x Av), EW = v x Aw. 

For the scalar functions v, w, and B we obtain bhe following equations from (2.1) 
and (2.3): 

a 
at V4AZ~-Aa,O = S.{(SV+EW).V(SW+EW)}+- (V2A2v), 

a 
V2A2w = E.{(SV+EW).V(SV+EW)}+,(A~W), 

VV-RA,v = P 

7-2 
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where A, is the Laplacian with respect to horizontal dimensions. We shall use 
a Cartesian system of co-ordinates with the z co-ordinate in the direction of h and 
the origin a t  the lower boundary. Since the boundaries have fixed temperatures 
and do not exert stresses in the horizontal directions, the boundary conditions 
for v ,  w and 0 are 

v = a;,v = a,w = 0 = 0 at z = 0,1, (2.6) 

where the symbol aB denotes the partial derivative with respect to x ,  denoting 
the second derivative. 

The stationary two-dimensiona.1 solution of equations ( 2 . 5 )  corresponding to 
convection in the form of rolls can be represented by the following series in 
powers of the Prandtl number P :  

( 2 . 7 )  

v = A{cos ax sin 7rz + o(A2Pz)}, 

8 = A{(+ +a2)2cosazsin~z-PA(71z+a2)2a2(47r)-1sin 27rx+o(AZP2)}, 

w = 0, 

R = (71' + C X ~ ) ~ / ~ ~  + +P2a2A2(;rr2 + a2), .  .. . 

For details of the derivation we refer to SLB. The wavenumber a is an independent 
parameter of the solution (2.7). Of physical importance is the valuea = a,= 77/,/2, 

for which the Rayleighnumber reaches its lowest value R, as a function of a and A. 
R, is the critical value at  which the static solution of the problem v = 8 = w = 0 
becomes unstable when the temperature difference between the boundaries is 
slowly increased. Although only the case a = a, has physical relevance we shall 
leave a unspecified in most of the following analysis. Since the terms which have 
not been denoted explicitly in (2.7) are proportional to P2 or to higher powers of 
the Prandtl number the expressions (2.7) describe an exact solution of the 
nonlinear equations (2 .5 )  in the limit 

The following analysis will take advantage of this fact by assuming the case of 
vanishing P2, while the amplitude A remains finite. Terms proportional to P will 
be taken into account to indicate the influence of the Prandtl number. Although 
the term of the order P2A2 in the expression for R in ( 2 . 7 )  will not be taken into 
account in the analysis, it has been denoted explicitly to obtain an approximate 
relation between A and R for the comparison with experimental results. 

In  order to investigate the stability of the solution (2.7) we superimpose 
infinitesimal disturbances of arbitrary spatial dependence. Since the equations 
of the disturbances 6 , 8 ,  # are linear and do not depend explicitly on t and y an 
exponential dependence on these variables can be assumed: 

0 = v"(x, z )  exp {iby + crt}, 

8 = G(x,  z )  exp {iby + crt}, 

0 = 6(x, x )  exp {iby + crt}. 
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Because the disturbances have to be bounded at infinity, the wavenumber b must 
be real. Inserting expressions (2.9) in (2.7) we obtain as equations for v", 8, 6 

(V4 - d2) A,$- 4 , B  = S .  {Sv". VSV + SV. VSv"}+ib{a&(Sv. V 8 )  + S.  (8 8, SV) 

- a,(sv. va, GI) - bya,(Sv. va,q 
+ 6v .VA,v"+ A,(Sv.Vv") - S .  (v"i3,Sv) 

+ Sv".VA,v - (V4 + 2V2A, - crV2 - crA2) v"+ @} 

- ib3G a, A, w + b4{Sv. Vv" - v"a,A,~ 

- (4, + 2V2 - g) G} + b6v", (2.10 a) 

(v2-g) A,G = a,(sv.va, ~ ) + i ~ ~ ~ ~ 4 , ~ a ~ , v " - a ; ~ a ~ ~ A , v " }  

- q a , (  G a:, v) - 4, W a, G - (v2 + A, - U )  $1 
+ ib3v" a;, a,v - b 4 ~ ,  (2.  lob) 

( 2 . 1 0 ~ )  Vz6 - R4,v" = P(a6 + Sv" . V 8  + SV . VB + ibG ax@ + bzv" a,8} + b2(B- Rv"). 

The stability analysis in SLB has shown that the two-dimensional solution (2.7) 
with a = a, is the only stable solution of equations (2.5) for sufficiently small 
values of A .  All possible disturbances correspond to real values of the growth 
rate cr in this case. The disturbance with highest growth rate is given by 

6 = vo = (- i/cd) a,v, 6 = 8, = (- iiaA) axe, = 0, a, 8 = 0, (2.11) 

while all other disturbances have negative values of cr. The present analysis is 
concerned with the stability of solution (2.7) for values A of the order unity and 
larger, in the range described by the limit (2.8). We expect that the most 
destabilizing disturbance will be closely related to the particular disturbance 
(2.11). By differentiating equations (2.5) with respect to x it can readily be 
verified that (2.11) represents an exact solution of (2.10) with b = 0 for arbitrary 
values of the amplitude A .  The physical meaning of the disturbance (2.11) is the 
translation of the stationary convection pattern in the x direction. The vanishing 
growth rate cr reflects the translational invariance of convection in a horizontally 
infinite layer. 

To investigate the possibility of disturbances with a positive real part of g in  the 
neighbourhood of the solution (2.11) we shall consider disturbances of the form 
(2.9) for small values of b. This allows us to assume an expansion in powers of b: 

6 = 8,+bB1 +bzB, + 
cr = GO+ ba,+b%,+ 

v" = W, +bv, +b2vz + ... 
(2.12) 

Before we write down the expansion for the variable 8 we have to pay attention 
to the different ways in which the x-dependent part w' and the x-independent 
part W = 8 - w' of the variable 8 enter the problem. For the latter part, the terms 
{ a , A , v a ~ , ~ - a ~ , a x v 4 , ~ }  in (2.10b) vanish, which suggests that the expansions 
for W and for w' should be based on different equations. We also note that the 
2-independent part of 8 remains undetermined in the solution (2.11) since only 
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the x derivative of fij has physical meaning in the two-dimensional case b = 0. In 
principle we have to admit the possibility 

ZL: M O(b-l) for b --f 0 (2.13) 

since such a function W would still lead to a finite expression for the velocity of 
the disturbance. Hence we shall assume 

2(, = b-l{wo + bG, + b2W2 + . . .}, 1 
J W' = w;+bw;+b2Wk+ ... . 

(2.14) 

The analysis of the next section will show that Go, w; a.nd u, have to vanish, thus 
establishing (2.1 1 )  as an analytical solution of (2.10) in the limit b + 0. 

3. The oscillatory instability 
By inserting expressions (2.12) and (2.14) into the system of equations (2.10) 

we obtain a hierarchy of linear equations corresponding to different powers of b. 
The equations are inhomogeneous with the exception of the equations of lowest 
order in b which have the form 

(3.1 a)  

(a~ , -G- , )WO+t~vO = 0, (3 . lb)  

(3.1 c) 

we,- ~ ~ , ~ , - ~ ~ ~ ~ , + s v , . ~ ~ + ~ v . ~ e , + i ~ , a , e ~  = 0. (3 . ld)  

(V2- go)  V2AzvO - A200- V,V, - i&?fio = 0, 

(V2 - a,) A2 W ;  - ~, (SV.  Va, w;) = 0, 

The following operators have been introduced for convenience : 

(3.2) i 
v,v, = s . {SV . vsv ,  + sv, . GSV}, 

&loo = ZL:,axV2A2v- 8~,2c,axA2v, 

X V ,  G a , { a , ~ , a , A ~ ~ - ~ , a ~ , h 2 ~ } .  

The average over the x co-ordinate is indicated by a bar. The total average over 
the z as well as the x co-ordinate will be indicated by angular brackets (. ..). 

By multiplying ( 3 . 1 ~ )  by w; and averaging it me obtain 

(w;(V~-CT,)A~W;)+$(V.(SV(~,W;)~)> = ( ( G ~ , W ~ ) ~ + G - ~ ( ~ , W ; ) ) ~ )  = 0. 

Disregarding the possibility of negative values of go, we conclude that w; = 0. 
Another condition on the solution of (3.1) is found by taking the z average of 
(3 . lb) ,  which yields uo(wo) = 0. Inspection of (3.1) shows that solution (2.11) 
solves the equation with vanishing iLl,. In  addition to the solution 

V O  = ( -  l / d )  a2v, Go = ZU; = = 0, 0, = ( -  l / a A )  axe, (3.3) 

the solution 
vo = ( l / A )  v, ?Ale = w; = uo = 0, 0, = ( l / A )  0 (3.4) 

is also possible. The latter solution does not lead to instability, however, when 
terms of higher order in b are considered, and has negative values of u, when 
terms of the order A2P2 are taken into account in contrast to solution (3.3), 
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which always corresponds to go = 0. Prom the analysis in SLB it  is known that 
(3 .3 )  and (3.4) are the only solutions of (3 .1 )  with a non-negative real part of a, 
for sufficiently small values of A .  We expect that this fact holds for arbitrary 
values of A ,  although we shall not attcmpt to prove this here since we are not 
interested in the general problem of stability. For the purpose of proving 
instability i t  will be sufficient to restrict the attention to disturbances which can 
be regarded as small modifications of the solution (3 .3 ) .  By starting with expres- 
sions (3 .3 )  the inhomogencous equations of higher order in b can be solved 
subsequently. In  order to dcterminc the solutions of the inhomogeneous equations 
uniquely we impose as an orthogonality condition 

R(v,V2A2v,J + P(0,0,)  = 0 for n 2 1. (3 .5 )  

Since a, vanishes, the average (w,,) of 10, will be determined by equations of 
higher order in 1) than the equation for W,,. For this reason 5, will be separated 
into thc two parts 

Gn = (w,,)+wW:, with (w;)  = 0 for n 2 1 .  

The equations of first order in b have the form 

V4A2U,-A,0,-T’,v,-i~IbW; = a,V2A2v,+i(to,)a,V2A,v,  ( 3 . 6 ~ )  

a%,Ib;+iT’,v, = 0, (3 .6b)  

c ~ A , ~ ;  - a,(sv.va,w;) = 0, ( 3 . 6 ~ )  

V20, -  RA,v ,  - P{Sv , .  V O + S v .  P0,) = P(cr,U, + i ( w l )  a,@. (3 .6d )  

This system of equations reduces to  the homogeneous system of equations when 

r, = i ( w l )  Acr (3 .7 )  

(3 .8 )  

(3 .9 )  

is assumed. Hence we conclude in accordancc with condition (3 .5 )  that  

v ,  = w; = i , ; = 0, = 0. 

(IT+ b2) b2(tZ) = b2(A,vaz G) +ib3(i7a~,a,v). 

I n  order to determine ( w l )  we have to consider the total average of (2.10b) 

Comparison of the coefficients of bn in this relation yields the f i s t  non-trivial 
result for n = 3 :  a l ( w l )  = i(voa&a,v) = i&n2A. (3.10) 

This relation together with (3 .7)  gives 

(w,) = in, C T ~  = & inAa/2.  ( 3 . 1 2 )  

Sincc a, is imaginary, higher order terms of a must be determined to decide the 
problem of instability. From the tcrms of second order in b the following system 
of equations is found: 

V 4 A 2 v 2 - A 2 0 , - ~ v 2 - i V b w ~  = -az(Sv .Vazv , )+S.  (v,a,Sv)+ (V4+2V2A2)v0 

+ a,V2A,v,  + i ( w 2 )  axV2A,v - 0,, (3.12 a )  

(3.1 2 b )  a:,%;+ q v ,  = i(v,a:,a,v - (voa;,a,v)), 
V ~ A , W ; - ~ ~ ( S V . ~ ~ , ~ ; )  = - ( w , ) a , ~ , v ,  (3 .12c)  

V20,- R A 2 ~ , - P { b v 2 . V 0 + S ~ . V 0 , }  = P(v,a,0+a20,+i(w,)~,O}+0,- Rv,. 
(3 .12d)  
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The system (3.12 a, b, d )  of three coupled inhomogeneous linear equations can be 
solved when the inhomogeneity is orthogonal to  the solutions of the adjoint 
homogeneous problem. This solvability condition provides the equation for the 
determination of g2. The relevant solution of the adjoint problem for which the 
solvability condition yields a non-trivial result has been derived in appendix A. 
Multiplication of (3. I2a,  b, d )  by v*, %* and ( l /R)  0*, respectively, adding the 
results and averaging yiclds 

0 = (azv*sv. ca,v,) + (Sv'". voazsv) + (2a2- 7r2) (7?+ a2) (v*v,) +i(W*vOii~,a,v) 

+ (Y/R) (O*vOa,8)+({(n2+a2)a2v* +Pa~0*/(n2+a2)}(a2vo+i(w2)6,v)). 
(3.13) 

Before this condition can be evaluated we have to go back to equation (3.9) to 
obtain an expression for (w2) .  From terms of order b4 (3.9) yields the relation 

(a2 + 1) (wl) + gl(w2) = (A,va,w;). (3.14) 

Since u1, as well as w;, is proportional to  (wJ this term can be cancelled from 
relation (3.14). By using the solution (B 1 )  for zu; from appendix B, (3.11) can be 
rewritten in the form 

cr2 + iAa(w2) = - 1 + ia27rAc,,. (3.15) 

The solvability condition (3.13) can now be evaluated. After inserting the 
expressions (A 2), (A 3) and (A 5 )  (see appendix A) for v*, U* and W*, and using 
(3.15) we obtain 

2rT2(1 +P) (n"a2)a2 = [n2-a2(3+P)] (7P+a2) -a2,a2An[3~2+012+aP(~2+a2)] 

+ ( 1  -al3) ( a 2 A n ) 2 & [ 1 - ( a 2 + n 2 ) / 4 n 2 ] + ~ 1 1 a 4 ~ A $ ( l + P )  (7r2+a2). (3.16) 

As before, terms of the order P2 have been neglected. Inspection of (3.1 6) shows 
that for a2 "N +r2 the growth rate g2 is negative if the amplitude A is so small that 
all terms but the first on the right-hand side can be neglected. An expansion in 
powers of the amplitude A yields 

i n2 a2 + m2 
a2 

2O-,(l+P) = - - 3 - P + -  

.. 

[l /(n2 + a2) + F/2(  97r2 + a"] + &P> 
(979 + a2)2 (7r2 + a2) - ( n 2 +  a2)4 (97r2+ a2)--1 

+ ( a ~ r A ) ~ {  

+... . (3 .17)  
Y2(79 + a2)2 I - 

Because the convergence is not rapid enough the expansion (3.17) cannot be 
used to calculate the critical amplitude Ai for which cr2 vanishes. To achieve this 
goal the coefficients a13, a22 and c l l  have been determined numerically in 
appcndiccs A and B in the case a2 = &?, P = 0. The result is 

g2 2 0 for A 2 Ai  = 1-215. (3.18) 

Each of the terms on the right-hand side of (3.16) with the exception of the first 
gives a positive contribution to cr2. For this reason it is not possible to trace the 
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cause of the instability to any particular term in the equations. Expression (3.17) 
indicates that the Prandtl number does not influence the critical amplitude Ai 
very much, although this statement may have to be changed when terms of the 
order P2 and higher are taken into account. The experimental observations 
which will be discussed in $ 5  tend to support the notion that the instability 
depends predominantly on the parameter A .  Since the rate of growth of the 
instability increases like b2 for low values of b the strongest growing disturbance 
for a given value of A > A$ will correspond to a finite value of b, even though we 
anticipate that the lowest value of A a t  which the instability occurs is given by 
Ai ,  corresponding to the limit b + 0. In  order to determine the wavenumber of 
maximum growth the contributions to u of higher order in b have to  be taken 
into account. Instead of pursuing the expansion analysis further we shall use the 
Galerkin analysis for this purpose. 

4. Galerkin analysis 
I n  this section u e  shall use a more general, yet less systematic, technique for 

the analysis of the cigenvalue problem posed by the stability equations (2 .10) .  
For simplicity we assume P = 0, in which case 0 can be expressed in terms of v". 
Without making any assumptions about the parameter b solutions of cquations 
(2.10) can be obtained by expanding v" and .itl in terms of a system of orthogonal 
functions: 

5 = C fnnivnmy I 
! n, ni 

(4. I )  

with v,,, = sin nnz e imaz .  The summation runs over the indices n = 1,  . . . XI, 

m=-cc  , ..., - 1,0 ,  1 .  ..., co. After introducing the representation (4 .1 )  into 
(2 .10)  we obtain a liomogcneous system of equations for the unknown coefficients 
f,,,, and gnm by multiplying ( 2 . 1 0 ~ )  and ( 2 . 1 0 b )  by v,,,, and azvn,, respectively, 
and averaging the result over the fluid layer. The homogeneous system of equa- 
tions has a solution when the determinant of the matrix of thc coefficients 
multiplying the unknowns f,, and qnm vanishes. This solvability condition 
determines the eigcnvalue (T. 

Since this method of analysis is often used in stability problems and since the 
expressions for the matrix elements are rather lengthy, we shall not describe the 
solution of the problem explicitly. We note that the system of cquations for f,,, 
and grim separates into two systems corresponding to either even values or odd 
values of n + m. Both systems can be separated even further using the symmetry 
of the stationary solution with respect to  thc x direction. In order to  evaluate 
the determinant, the matrix of the coefficients of thc unknowns fnnl and y,,, has 
to be truncated. To include only the most important modal interactions wc 
neglect unknowns and equations corresponding to  indices with )ml + n  4, 
1.11 3. I n  this case the determinant reduces, owing to the separation 
property, to three determinants of 4 x 4 matrices and one determinant of a 3 x 3 
matrix. The two determinants corresponding to odd values of na + n do not yield 

2 or n 
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eigenvalues with positive real part in the casc of interest cx = a, = 77/,;2. The only 
instability in this case corresponds to  disturbances which are antisymmetric 
in 5 and have even values of m+n as is to be expectcti for the oscillatory 
instability. The real and imaginary parts of the growth rate CT obtained from 
the determinant of the 4 x -i matrix are plotted in figure 1. The imaginary part 
matches the value (3.11) obtained from the analytical theory almost exactly as 
h approaches zero. Owing to  the truncation the real part of the growth rate is 
not iis well approximated. In  place of the accurate relation (3.1s) the Galerkin 

(1 0 I I1 2 0 3 0 4 0 5 

bln 
FIGURE I .  The dependence of the real and imaginary parts of the growth rate, a, and ut, 
on tlro Tvavenuinbor b and amplitude A .  --, ar, valuos of A indicated by the numbors by 
tlir c t i n  f’s: - - -, Bu,/A+ for the case CY, = 0. 

procedure yields 0; 2 0 for A 2 0.967 in the limit b + 0. Since the critical 
amplitude of the instability has been obtained already in (3.18) and since a t  this 
point we are more interested in the qualitative dependence of err on b, no attempt 
hits been made to replace the ana1ytic.d evaluation of the determinant by a more 
sophisticated computation at high truncation values. Figure 1 shows that the 
wavenumber b,  of the disturbance with maximum real part C T ~  increases strongly 
from zero as the amplitude A increases from the critical value. As the amplitude 
increases further the value b, approaches a limiting valuc in the neighbourhood 
of 0 . 3 8 ~ .  This behaviour is in agreement with the experimental observation that 
the instability always occurs at a finite value of b. 

5 .  Discussion 
From the phenomenological point of view the oscillatory instability of rolls 

rescmhles a wave propagating along a rope. The roll pattern is shifted perpendi- 
cular to its axis periodically along the axis and in time. The oscillatory bchaviour 
of the translation is caused by the z-indcpcndent componcnt of the vertical 
vorticity which in turn is generated by the interaction between the disturbance 
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and the basic flow. Since the frequency of oscillation may have both signs, 
according to (3.10), the instability can manifest itself as a wave travelling in 
either direction along the axis of the rolls or as a standing wave. A qualitative 
picture of the oscillating roll pattern is shown in figure 2. 

A I 

FIGURE 2. 

- 
1' 

Qualitativo picture of oscillating convection rolls corresponding to  a wave 
travelling in the positive y diroction. The 2, z averago of the horizontal velocity shown at 
the top of the figure (described by (wl) in tho analysis) has the opposite sign in the case 
of a wave travelling in the negative y direction. 

The phenomenological picture of the instability compares well with the 
detailed observations by Willis & Deardorff (1970) of the oscillations of con- 
vection rolls in a layer of air. These authors stress the point that the oscillations 
occur essentially independently of depth, in contradiction to  earlier theoretical 
explanations. Because of its smaller l'randtl number, convection in mercury 
would probably offer a better opportunity for quantitative comparison with the 
theory. Unfortunately, however, no detailed observations of these oscillations 
in mcrcury have been reported in the literature. I n  the following we shall attempt 
to apply the theory to the experimental situation, even though the limit of small 
Prandtl number and the free boundary conditions are not approached in any of 
the experiments. Since the experimental results are given in terms of the Rayleigh 
number, we use the last relation in (2.7) to  express the amplitude as R-R, with 
R, = (n2+a33/a:. Accordingly, the condition (3.18) for instability assumes the 
form R-R, Ri-R, - 

2 - = 0.310P2. 
RC RC 

(5.1) 

The period 7 of the oscillations measured in units of d 2 / K  as in the experiments is 
given by 

(5.2) 
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It is not surprising that the observations of Willis & Deardorff (1970) and 
Krishnamurti (1970) indicate much higher Rayleigh numbers for the occurrence 
of instability than those suggested by (5.1). For a rigid boundary exerts a 
stabilizing influence on the mechanism of instability and, in addition, the 
amplitude of the velocity field increases less rapicily with the Rayleigh number in 
the ease of rigid boundaries. The experimental value of the critical ltayleigh 
number for the onset of oscillations has not yet been well-determined as a func- 
tion of the Prandtl number. The observations show, however, that the critical 
value increases strongly with the Prandtl number, at least for Y < 10. 

A much closer correspondence exists between the theoretical expression (5.2) 
and the observed values of the period of oscillation. The dependence on the 
Rayleigh numlmlies between the observedpowcrlawsof R-o4 (Willis & Deardorff 
1970) ;md R-OG4 (Rossby 1969; Krishnamurti 1970). The fact that the wave- 
number b observed by Willis & Dcardorff is larger than the wavenumber a of the 
basic rolls appears to be in disagreement with the result of $ 4 .  However, owing 
to the high Rayleigh numbcr the wavenumber of thc rolls in this experiment is 
only 0.57aC if it  is expressed in terms of the critical wavenumbcr for rigid 
boundaries. To investigate the dependence of the wavenumber of strongest 
growth, h,,,, on a the calculations described in $4 have been carried out for a 
number of values a different from a,. The results show that the wavenumbcr b,, 
of maximum growth divided by its value given in figure 1 increases a t  roughly 
half the rate a t  which a/a, decreases from the value 1. Hence the observed 
wavenumber b = 0.8ac is in near agreement with the prediction of the theory if 
we assunie that the results for rigid and for free boundaries bccome roughly the 
same if expressed in terms of the respeet,ivc critical wavcnumber zc. The fact that 
the period of oscillation is independent of the Prandtl number according to ( 5 . 2 )  
is dcnionstrated by a graph shown in Krishnamurti’s paper in which measure- 
ments ranging over several orders of magnitude of the Prandtl number have 
been plotted. 

,4t Prandtl numbers of order 10 and larger, thc oscillations occur as the 
instability of a three-dimensional stationary convection pattern since the 
Rayleiyli number exceeds 23 000. This value marks the upper limit beyond which 
two-dimensional convection in the form of rolls is unstable and is superseded by 
the three-dimensional structure of bimodal convection (Busse & Whitehead 
197 1). The qualitative agreement between observations at widely different 
Prandtl numbers indicates that the mechanism leading to the oscillatory 
instability operates in the case of three-dimensional convection in a way similar 
to that in the case of rolls. Although this interpretation needs further investi- 
gation, it eliminates the need for the explanation of the oscillations in terms of 
Howard’s theory of the instationary thermal boundary layer (Rossby 1969) or in 
terms of Welander’s thermal oscillations (Krishnamurti 1970). Shortcomings of 
both explanations have been pointed out in the detailed investigation of Willis & 
Deardorff. These authors refer also to  numerical calculations by Lipps which 
indicate oscillations of rolls. Unfortunately, no written account of this study 
seems to  be available. 
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6. Concluding remarks 
An important result of the preceding analysis is the fact that the oscillatory 

instability of rolls is caused solely by the action of the hydrodynamic advection 
tcrms in the equations of motion. The mechanism of instability is thus inde- 
pendent of the release of gravitational energy which produces the convection 
rolls. We expect for this reason that any field of two-dimensional vortices in the 
form of rolls can become unstable by the same mechanism of instability. 

The oscillatory instability of convection rolls is related, a t  least phenomeno- 
logically, to  the non-axisymetric instability of Taylor vortices between concentric 
cylinders rotating at  different speeds. However Taylor vortices differ from con- 
vection rolls by the additional azimuthal componcnt of the velocity field. I n  
their theoretical analysis of the problem, Davey, DiPrima & Stuart (1968) tend 
to  support the view originally expressed by Meyer (1966) that the instability of 
the Taylor vortices is caused by an Orr-Sommerficld type instability of the 
azimuthal velocity component. Because of the anistropy between the azimuthal 
and axial direction and because of the additional azimuthal velocity component, 
i t  is rather difficult to isolate the mechanism for the Taylor vortex instability. 
Hence the question of its relation to  the mechanism of oscillatory instability 
cannot be answered definitely a t  this point. 

The assistance of Alan Joncich in programming the numerical calculation is 
gratefully acknowledged. The research was partly supported by the National 
Science Foundation Grant GA-10167. 

Appendix A 

together with the boundary conditions (2.6) can be written in the form 
The adjoint homogeneous problem for the system of equations (3.11a, b, d )  

VM,v*-A,O*+ V~,~V*-~V:W*+R-~YS.(OVO*) = 0, 

a&%* + i V$v* = 0, 

v2e* - R A , ~ *  + P S ~ .  vo* = o, 

(A 1 4  
(A I b )  

(A 1c) 

where the operators V:, V i  and V$ are defined by 

v;v* = S . (Sv . VSv*) + 6.  (Sv. SVv*), 
v;;i~i* = az(aziz*a,A,v) +azw*a;,A2v, 

v:v* = V*V2A2axv-(v*V~A2ax2;) - a;z(v*A2a,v). 

The condition that the z average vanishes has been imposed in determining V:v* 
since the same requirements hold for WA. The variables v*,8* and G* havc to  
satisfy the same boundary conditions (2.6) as v, 8 and w, respectively. To solve 
equations (A 1) we assume the representation 

v* = C amnsinmmsinnm, 
m, n 

O* = C b,,sinmsinnnz. 
m. n 
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Integration of (A 1 b )  yields the expression 

(A 3) 
-. 
2 0 *  = 4ia3 cos nnz(a,,+, - [ 1 - (a2 + n2)/n%’I. 

n>l 

Since the solution vo, 8, of the adjoint homogeneous system is antisymmetric in x 
we have assumed the same property in the representation (A 2) for v*, O*. The 
symmetric solution of (A 1 )  will not yield any additional constraint in the 
solvability condition (3 .12) .  

Insertion of the expressions (A 2) and (A 3) into (A 1 a, d ) ,  multiplication of the 
equations by sin pax sin vnz and subsequent averaging yields a system of linear 
equations for the unknown coefficients aPu and bPY: 

An 
- p2(v2n2 + p2Cw a,v + p2b,, + 4 a2 c ap+Sp+szp(ih + 8,) 

s,, s* 
A2a4n2 a2 + n2 

x [n2( v2 - 1) + aZ(p2 - 1) ( 8,p - s, v)] - - 
8 

Act% 
- ( v%r2 + p2a2) b,, + R ( , U ~ ) ~  aPy + P - c bp+Slu+S*(fJIP - S 2 V )  = 0. (A 4b) 

4 s,,s, 

The symbols S,, S, take either the value +. 1; the sum has to  be extended over 
those four possibilities. The solutions of (A4) separate into solutions for which 
p + v is an odd integer and for which ,u + v is an even integer. We shall restrict the 
attention to the latter possibility since it corresponds to the symmetry property 
of the inhomogeneity in (3 .11) .  Equations (A4)  for p = v = 1 are not coupled to 
the rest of the equations and can be solved readily by making the following choice 
of the undetermined amplitude: 

a,, = 1, b,, = (n2+a2) , .  (A 5 )  

After these expressions have been inserted, (A 4) for v + p  > 2 forms an infinite 
system of inhomogeneous equations for the unknowns apu and b,,(v +p > 2 ) .  Of 
particular interest are the coefficients u13, bI3. a2, and b,,, which are needed for 
tohe evaluation of the solvability condition (3.12). To obtain a solution of the 
problem, the system (A 4) with v + p  > 2 can bc solved by using an expansion in 
powers of the amplitude A or by truncating the system. The first method yields 

(n2 + a73 
b - a  + ... ) 13 - 13 a ~ + 9 n ~  

AT ( 1+-- n 2 + a 2 )  +..., - a13a2 
= lO(n2 + 012) 2 9772 + a2 

+ ... . b,, = (n2+a2)a,,- P A  b13a2 
4(n2 + a2) 
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The most natural way of truncation seems to be the neglect of all unknowns and 
equations where the sum p + v of the indices is larger than some prescribed value 
N .  The coefficients plotted in figure 3 have been computed by this method in the 

0 01 

003  

- 
- 

0 02 I I I I I 1 1 1 1  
1 I0 100 

An 

FIGURE 3. The coefficients al,, a2* of tho solution (A 2) of the adjoint homogeneous 
problem in the case u2 = in2, P = 0, and tho coefficient cI1 of the solution (B 1)  for wt. 
Coefficients a,,”, ccv with p+ v 3 N = 12 havo been neglected in the computations. The 
dashed linos indicate the doviations of tho results when the truncation number N = 10 
is used. 

case P = 0, u2 = $ 7 ~ ~ .  The convergence of the solutions for different values of N is 
very good for the moderate values of A which are releva,nt to  the question of 
instability. 

Appendix B 
In order to  solve (3.1 1 c) a Fourier representation for w; of the form 

w;; = (q) c cc, cospux cos v7Tz 
sbO,/L>l 

will be assumed. Each Fourier component satisfies the boundary condition (2.6). 
The symmetry of ( 3 . 1 1 ~ )  shows that only Fourier components which are sym- 
metric in 2 enter the representation and that the coefficients c,, are vanishing 
unless the sum of the indices, p + v, is an even integer. Using thc representation 
(B 1) equa.tion (3.11 c) can be reduced to the following system of linear algebraic 
equations: 
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where the sum has to  be extended over the four possibilities of the signs S, = 

S2 = 
An expansion in terms of powers of the amplitude A yields as solution of (B 2) 

1 ,  
1. For the determination of u2 only the coefficient cll has to be known. 

1 Cll = 7rA(n2+012)--1 1 ---( (nA)2+ ... ( 8 7 r 2 f U z  
(B 3 )  

In analogy with the solution of the adjoint problem in the appendix A we obtain 
an alternative solution in the case a 2  = inz by truncating the system (B 2) for 
,u + v 3 iV. The dependence of numerical value of cI1 011 the amplitude A is shown 
in figure 3 for different values of N .  
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